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Abstract

Distributed application management consists of monitoring and controlling an appli-
cation as it executes in a distributed environment. It encompasses such activities as

configuration, initialization, performance monitoring, resource scheduling, and failure

response.

In this paper we describe the Meta systemi a collection of tools for constructing dis-
tributed application manag-ement software_'Meta provides the mechanism, while the

programmer specifies the policy for application management. The policy is manifested
as a control program which is a soft real-time reactive program. The underlying appli-
cation is instrumented with a variety of built-in and user-defined sensors and actuators.
These define the interface between the control program and the application. The control

program also has access to a database describing the structure of the application mad
the characteristics of its environment.

Some of the more difficult problems for application management occur when pre-
existing, nondistributed programs are integrated into a distributed application for which
they may not have been intended. Meta allows management functions to be retrofitted
to such programs with a minimum of effort.

Keywords and phrases: Distributed application management, configuration manage-
ment, distributed operating systems, dynamic reconfiguration, monitoring distributed

systems, rule-based systems, Isls.
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O I MANAGING DISTRIBUTED APPLICATIONS

1 Managing distributed applications

There is a great deal of difference between a program that performs correctly and one that

performs well. A correct program does not fail or produce incorrect results, but a program

that performs well makes efficient use of resources and behaves predictably over a range

of environmental and operating parameters. Writing distributed programs that perform

well is especially hard. Distributed programs are often expected to run in widely varying

configurations, from a single machine to tens or hundreds, and on machines of widely varying

performance or from different vendors. Often they must continue operating when some of
the machines on which they are running fall.

V_'e call the activity of producing a distributed program that performs well for a given envi-

ronment distributed application management. Distributed application management involves

configuring the components of the system for a given hardware and software environment;

initializing the application in an orderly way; monitoring the behavior and performance of

the application; and scheduling work efficiently among the components of the application.

An application must be managed throughout its execution, continually reacting to a varying

workload, to changes in the environment, and to failures.

Traditionally, application management is either done manually or hard-wired into the code

of the application. A person f_rniliar with the internals of the application must continually

monitor and control it, and some adaptations can be made only by reprogramming. In

practice, many aspects of application management are ignored, resulting in poorly engi-

neered systems that work most of the time, but often exhibit unpredictable performance,

become inconsistent, expose partial failures, and prove fragile when even small changes are
made to the hardware or software base. In our work, we seek to avoid the deficiencies of

this ad hoc approach by creating a framework favoring the construction of robust distrib-

uted management software and applications, and a set of tools--the Meta system--which

directly supports our approach.

A distributed computing environment causes many problems for application management,

compared with a nondistributed one. The performance data required for system monitoring

is distributed throughout the system, making it hard to access. Variable communication

delays mean that the data is less accurate, and is difficult to collate. The potential for im-

proved performance through concurrency is one of the attractions of a distributed system,

but this concurrency significantly complicates all aspects of the application. For instance,

components of the application must be initialized in a well-defined order that observes the

dependencies between components. Failures are a fact of life in distributed systems and

greatly complicate management. Most applications do not have strong reliability require-

ments, but unless special efforts are taken, the overall reliability of a distributed solution will

be much lower than that of some equivalent nondistributed program, since the frequency of

failures is directly related to the number of hardware components.



Additional problemsfor applicationmanagementarisewhenexistingnondistributedpro-
gramsare re-usedin a distributedprogram. Suchre-useis an important wayof reducing
the costof distributed softwaredevelopment,but the resultingapplicationoftendoesnot
performwell and maybe difficult to manage.For example,the dependenciesamongthe
re-usedcomponentsmaybepoorlydefined,makingprogramstartupand recoverydifficult,
and the kindsof internal stateinformationnecessaryfor performancemonitoringand re-
sourceschedulingmaynot bemadeavailableby programsthat werenot intendedto runas
part of a distributedapplication.As weshallexplain,the Metaapproachis well-suitedto
applicationswhichre-useexistingsoftwarein this way.

Throughout this paper, we use the term application program to mean a distributed applica-

tion composed of one or more processes. A process is a single nondistributed address space,

e.g. a Unix process, with one or more threads of control. A component is a subsystem of

the overall application, comprising one or more processes, or occasionally a component of
the environment such as a file server or a workstation.

In the rest of this paper, we describe the mechanisms that Meta provides for application

management, how they are implemented, and how they can be used. The next section

lays out the Meta application architecture. We show how the management functions are

separated from the underlying application, and how these two layers interact with Meta. In

Section 3 we present an example of a scientific computing application in order to motivate

a more detailed presentation of Meta. The following three sections describe the Meta

system in detail. Section 4 is about instrumenting the application program with sensors

and actuators which will be used for monitoring and control. Section 5 is about describing

the structure of the program in terms of its component processes. Meta stores this structural

information in a database. Section 6 presents the rule-based language in which management

policy is expressed. Meta translates these rules into sequences of sensor and actuator
invocations.In Section7 we discussissuesof atomicityand consistency.We conclude by

comparing our approach with existingtechnologiesfordistributedapplicationmanagement

and noting the directionsalong which we are extending Meta.

2 The Meta application architecture

The Meta model of a distributedapplicationis depictedin Figure 1. In thismodel, the

management aspectsofan applicationareseparatedfrom itsmajor functionalparts,and the

interfacebetween thesetwo layersiswelldefined.In thisway, modifying the management

of an applicationis easier,and is lesslikelyto impaiz the correctnessof the restof the

program.

We call the management layer the control program. While, the underlying application is

built using conventional programming tools, the control program can be programmed in a
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Figure 1: Meta application architecture

language called Lomita. The Meta system is interposed between the control program and the

application, and presents the control program with an abstract view of the application and

the environment in which it runs. As shown in Figure 1, not all communication between the

control program and the application need go through Meta. The structure of the application

program--its constituent components and their interconnections--is declared to Meta in the
form of an object-oriented data model.

The control program observes the behavior of the application by interrogating sensors, which

are functions that return values of the application's state and its environment. Similarly,

the behavior of the underlying application and its environment can be altered by using

procedures called actuators. Meta provides a uniform, location-independent interface to
both built-in and user-defined sensors and actuators. This interface also provides ways to

combine multiple sensor values in order to compute more complicated sensors or to provide
tolerance of failures.

The particular sensors and actuators that are used depend on the application being con-

trolled. Typical sensors could include:

The CPU utilization on a machine. This is one of a number of built-in sensors provided

by Meta.
= _



The load on an application component. This might be the size of the component's

input job queue. Such a user-defined sensor can be implemented by supplying a

procedure in the component that will calculate the value when needed, or by directly

monitoring a variable in the process's address space.

The total throughput o/the application. This might be computed by combining the

data from a number of more primitive sensors located in each component of the

application. Meta provides ways to specify such derived sensors and associates well-
defined semantics with them.

The status o/ a component, i.e./ailed or operational. Meta provides built-in sensors

that test for the existence of a process, but one can also supply a user-defined sensor

that implements an application-specific liveness criterion.

Typical actuators could include:

• Change a process's priority. This might be a built-in actuator used to control fine-

grained scheduling.

• Change a lightweight thread's priority. This might be done by modifying some variable

within a designated process's address space, or by invoking a user-specified procedure

in some process.

• Restart a/ailed process. This might involve selecting a machine on which to restart

a failed process, initializing the process, and integrating the new process into the

pre-existing components.

Meta offersseveralinterfacesby which programs can query sensorsand invoke actuators.

The basicinterfaceisfrom one ofthe programming lan_magesin which the applicationmay

be written:currentlyC, Fortran or Lisp. Other higher-levelinterfacesincludethe control

language, Lomita, which combines a real-timeintervallogicwith a rule-basedsyntax for

querying sensors.As describedlater,the semanticsofLomita cleanlycapturesthe temporal

nature of significantcomplex eventsin the distributedapplication.Meta executesLomita

commands using a fault-tolerantdistributedinterpreter.

Meta isimplemented using the Islsdistributedprogramming toolkit[Birman and Joseph

1987].Islsprovides primitivesfor reliableprogramming inductingprocessgroups and or-

dered atomic multicast. On top of these primitives,Islsprovides a toolkitof solutions

to common sub-problems in distributedcomputing such as distributedsynchronization,

resilientcomputation, and loggingand recovery.
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3 An example application: Seismological analysis

To make the discussion of sensors and actuators more concrete, we present an example

application and show how it is managed within the Meta framework. The application, Nu-

Mon, is a seismological analysis system intended primarily for monitoring compliance with

nuclear test-ban treaties. A real nuclear monitoring system, on which this simplified exam-

ple is based, is being developed using Meta and Isis by Science Applications International

Corporation. 1

°.••

I SigPro

J SigPro

I LanManager I
• • • . _ control

Figure 2: Simplified seismological monitoring application

NuMon consists of four component process types (see Figure 2). The SigPro processes

collect seismological data and perform signal processing on it. The much smaller resulting

processed data is stored in the OataStore. The Assess process is an interactive expert

system that interprets the data produced by multiple SigPro processes and forms hypotheses
about vaxious events• To confirm these hypotheses, further tasks are assigned to the SigPro

processes. Assess stores its event classifications in the DataStote. The structure of the real

application is much more complex, with several kinds of SigPro processes that axe created

in response to different events detected by Assess.

The LanManaser contains the control prograzn for NuMon. During normal operation the

control program schedules work eflidently among the available machines. V/hen individual

machines crash it reapportions work automatically, and when total failure occurs it restarts

the application. In the remainder of this section we will relate the issues addressed by the

LanManager to the Meta sensor/actuator model.

_DARPA Contract MDA972-88-C-0024.
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3.1 The LanManager

The LanManager embodies the control policy for configuration, scheduling and response to

failures. This policy is expressed in the form of a rule base. Its second function is to support

a graphical user interface which displays the current system state and allows the user to

alter policy rules or issue commands to tune the performance of the application. Thus

the tanManager takes a semi-automatic approach to application management. Common

activities such as system startup and shutdown and individual machine failures can be

handled without human intervention. But other, perhaps unforeseen, circumstances can

be given to the user to handle. Typical examples include a persistent software error that
causes some component to crash no matter how many times it is restarted, or a full disk.

3.2 The SigPro performance sensors

The SigProprocessesaxe computation enginesthat servicerequestsfrom Assessand inter-

activeusers of the system, and processthe input data. The SigPro processesderivefrom

largesequentialFortran programs developed by seismologistswith littleexperiencein dis-

tributedprogramming. A crucialrequirement,therefore,was thatapplicationmanagement

functionsbe easy to add to theselargeprograms without requiringsubstantialmodification

of the Fortran code.

In order to schedule work among these tasks and startauxiliarySigPro processeswhen

needed to improve throughput, each $igPro exports two performance sensors: the load

sensorand the backJo9_ensor.The backlogsensormeasures the backlogofinput data tobe

processed.It correspondsto a program vaxiablein SigPro.The load sensorisa procedure

that returnsa measure of $igProload by combining load factorssuch as the currentsize

of the input task queue and the recentactivitywithin the process.The interfaceby which

thesesensorsare made availableto Meta isexplainedin Section4.

The LanManager will typically examine sets of sensor values, such as the average of all the

5igPro load sensors, or the maximum of a load sensor over the last two minutes. These

kinds of operations are directly supported by Meta through the notion of der_ed sensors,

which may be computed from primitive sensors values using a number of built-in functions.

Meta addresses the issues of sampling skew, imprecision and dynamic group membership

changes that arise when deriving sensor values in a distributed computing environment.

3.3 SigPro fault tolerance

If the Assess process fails (for example the machine on which it is run_g crashes), a new

copy of Assess should be started elsewhere. The LanManager must therefore monitor the
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Assess process, choose a new location to restart Assess after a crash, and reconnect this new

process to the SigPro and DataStore subsystems. Then the work that was in progress at the

crashed Assess must be assigned to the newly created Assess.

The tanManager uses the capabilities of Meta and Isls to accomplish these actions in a

fault-tolerant manner. The Assess process uses the Isls spooler tool to log its actions and

to periodically checkpoint its state. In this way, when it fails there is a stable record of

the tasks it was engaged in and its progress. Some of the built-in Meta sensors are used

to detect failure, and to identify suitable alternative machines on which Assess can be run.

Meta actuators are invoked to restart Assess with the correct spool file, and to re-establish

connections to the rest of the application.

3.4 LanManager fault tolerance and atomicity

The LanManager itself must tolerate failures. If it crashes, it can regain much of its state

by sensing the application and environment through sensors. Other important state can be

checkpointed using a tool such as the Isis spooler.

However, if the LanManager f_it_ midway through the sequence of sensor and actuator in-

vocations intended to restart an Assess process, we may find that two copies of Assess or

none at all were started. To solve this, each control pro&ram rule is executed atomically

by the Meta rule interpreter, using the facilities of the underlying Isxs system. Thus the

programmer is able to concentrate on writing a consistent set of policy rules for the Lan-

Manager, leaving most of the issues of fault tolerance in their execution to the interpretation

algorithm supplied by Meta. However in the case where a rule undertakes real-world ac-

tions, the issue of atomicity is more complex. A discussion of this is deferred to Section 7.

Having described a simple distributed application and its management requirements, we

will describe the Meta system in detail.

4 Instrumenting a distributed application

There are three steps to using Meta to manage an application like NuMon, and these are

described in the next three sections. First, the programmer instruments the application

and its environment with sensors and actuators. These functions, along with a set of

built-in sensors, provide the interface between the control program and the application

program. Second, the pro&rammer describes the structure of the application using the

object-oriented data modeling facilities of the Lomita language. Finally, the programmer

writes a control program referencing this data model. The control program may be written

as a Lomita script or in a conventional language, such as C, embedded with calls to the

Lomita interpreter. The control program can make direct calls on sensors, actuators and
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other functions in the data model and use higher level policy rules that specify a set of

conditions over sensors and the action to take when a given condition becomes true. _[eta

can be thought of as an object-oriented temporal database, 2 but where the application and

environment provide the data values. Figure 3 shows this functional layering of the ._[eta

system.

Policy Layer

whenSigProGroup.loed> 5 do
createSigPro[...]

Data Model

Structure of controlled system

Sensors and Actuators

SigPro.load J Machine.rexec

Figure 3: Meta Functional Architecture

We describe these layers from the bottom up. This section describes how sensors and

actuators are specified and used by Met•. Section 5 describes Meta's data modeling facilities
and Section 6 describes how to write the control program of a distributed application.

4.1 Sensors

A Meta sensor represents part of the state of the monitored application. Each sensor is

identified by the kind of application component it monitors (e.g. SigPro), the kind of value

it monitors (e.g. back/og), and the instance of the component it is monitoring (e.g. SPl). A

sensor can be polled in order to obtain its current value, and a watch can be set up that

alerts the client when the sensor value satisfies some predicate.

_By temporal we mean simply that the database supports • notion of time. In the terminology of Ahn and
$nodgraas [1985], Met• can be thought of as either • historical or • rollback database because the enterprise
being modeled by Met• is monotonic.
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Built-in sensors

XIeta provides a set of built-in sensors corresponding to information that can be obtained

directly from the environment. Examples of these are sensors which return statistics such

as the memory and processor usage of a process, obtained from Unix. Furthermore, Meta

provides the read_var sensor for reading the values of certain kinds of global variables in

an active process. This is implemented with the Unix system call that permits access to

another process's address space for debugging purposes. The alive sensor is a built-in sensor

that returns false if the component it is monitoring has failed.

User-defined sensors

Meta allows the programmer to define and implement primitive sensors. Such sensors corre-

spond to dynamic properties of the application whose values cannot be supplied by simply

polling the state of the underlying operating system. Sensors in this class are registered
with Meta at run-time. Each application process that contains a user-defined sensor must

connect itself to Meta when it is started up by calling meta_init:

meta. init (name, instance);

The name argument is the component type name (e.g. SigPro) and instance is an instance

identifier (e.g. SP1). An instance identifier can be a uniquely generated name, as in this

example, or a more human-understandable quantity such as a machine name. It is the

responsibility of the application writer to ensure that instance identifiers are unique for a

given component type.

Having issued this call, the process may explicitly export sensors. For example, the following

C procedure implements a simple SigPro load sensor:

int work_load (int *value)

{
value = work_queue_size % 2*mbytes_in_use;

return (0);

)

where work_queue_size and mbytes_ in_use are globalvariablesmaintained elsewherein the

process.This sensorprocedure ismade availableto Meta by callingthe new_sensorproce-

due in the Meta run-time library:

s_id = new_sensor (work_load, "load", TYPE_INTEGER, 100);
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The new_sensor procedure returns an internal identifier for the sensor instance that the

client can use for later communication with Meta. The first two arguments establish the

binding between the sensor name and the procedure that returns the sensor's value. The

third argument specifies the type of the sensor's value and the fourth argument defines the

minimum polling interval in milliseconds. The sensor should be polled at this (or a shorter)

period to avoid missing significant events. Meta uses the polling interval to determine

the sampling frequency needed to implement the watch operator which waits for a simple

predicate on the sensor value to be satisfied.

If the minimum polling interval is specified as zero, then there is no a priori minimum

polling interval. In this case, Meta must be notified when the value being sensed changes

in a significant way. The monitored program does so through the call:

check_ sensor (s_ id);

This procedure can be called by the application as a hint to Meta even when a non-zero

minimum polling interval was specified.

If the value of a sensor is simply the contents of a single global variable in a process, which

is the case with the SigPro baxklog sensor, then Meta's built-in read_var sensor can be used.

This avoids explicit c_]]._ to meta.init and new_sensor in the code for the process, which

simplifies adding application management to existing programs.

With both user-defined sensors and the read_vat sensor, some thought should be given to

synchronizing changes to the variable by the process and accesses to it via the sensor. In

the case of sensor procedures, it is possible to use programming techniques such as mutual

exclusion locks and semaphores to achieve this. With the read.vat sensor, however, the only

synchronization provided is the hardware memory interlock. Thus the global variable's value

should be represented in one word or less (where "word" is the unit over which the memory

interlock operates).

4.2 Actuators

Actuators are named and referenced in the same fashion as sensors. Meta supplies a number

of built-in actuators. These include an actuator to start up a process with a given argument

list, and a global variable actuator which allows a global variable in a process to be modified.

As is the case with the global variable sensor, the interactions between the actuator and the

internal operations of the process are synchronized only by the hardware memory interlock.

A process can be instrumented with user-defined actuator procedures in a similar way to

sensors. For example, we might have a $igPro.reset_file actuator:
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void reset_file (char *file)

{
cancel_ current_ work - TRU E;
new_file - file;

}

thatcauses the processto stop work on itscurrentdata fLle,and begin work on a different

file.The SigProprogram declaresthisactuatorby calling:

reset_ id = new_ actuator (reset_file, "reset. file", ACT_ SERIAL);

The lastargument specifieswhether multiple concurrentinvocationsof the actuator are

permitted (ACT_CONCURRENT), or as in thiscase,that multipleactuator callsmust be

mutually excluded in time (ACT_SERIAL). Clearly,triggeringthe reset_fileactuator also

raisesquestionsof atomicityto failures.We deferthisdiscussionto Section7.

5 Describing an application and its environment

Once an applicationisinstrumented with sensorsand actuators,the programmer writesa

controlprogram to manage the application.The controlprogram isusuallywrittenin the

Lomita language. Lomita comprises two sub-languages:one isan entity-relationshipdata

modeling language used to describethe structureof the applicationand the sensorsand

actuatorswith which itisinstrumented. The otherisa rule-basedlanguage for expressing

management policyrules.In thissection,we describethe Lomita data model, and show

how sensorscan be combined to form more complex sensors.In the followingsectionwe

presentthe Lomita rule-basedlanguage.

5.1 The Lomita data model

In order to describe an application, the programmer develops a schema using the Lomita

data modeling language. For exposition, we show in Figure 4 part of the Lomita description

of the seismological monitoring application.

Components in the applicationand the environment are modeled by entities,following

entity-relationshlpdatabase terminology[Chen 1976].An entityissimilarto a recordor

objectin a programming language. The example includesa Machine entitythat models a

computer, and a Processentitythat isa processrunning on a computer. Since one of the

functionsof the controlprogram is to allocateenvironment resourcessuch as processors

and peripheralsto the application,allthese must be representedin the data model. Like

entitiesare grouped togetherin entitysetswhich are similarto data typesor classes.
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Machine: external entityset
attributes

key name: string

sensor load: real

sensor users: {string}

sensor jobs: {string}

actuator exec(string, string)
end

end

Process: dependent Task entityset
attributes

key instance: OlD

property params: string

property executable_file_name: string
sensor alive: integer

sensor read_var(string): any

actuator write.var(string, any)
actuator exit

end

end

Task: relation Process - > Machine

operations
create

Process.instance := new. uid 0
do

Machine.exec(executable-file- name, params)
end

delete do Process.exit 0 end
end

end

SigPro: Process entityset
attributes

sensor load: integer
property executablLfile_name: string := "/usr/numon/bin/sigpro"

property params: string

actuator reset.file (string)

end

end

S;gProGroup: SigPro aggregate
attributes

key peogram, name: string

sensor load: integer := mean(Process.load)
end

select all
end

FreeMachines : Machine aggregate
attributes

key unique
end

select m suchthat sizl(Machine[m],jol_)<I 1 & Machine[m].load<-- 0.5
end

Figure 4: Data model for seismological application
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The "fields" or "instance variables" of an entity are called attributes. Lomita supports

three kinds of attributes: properties, sensors, and actuators. Sensors and actuators were

introduced above. Properties are static attributes whose values are stored in an internal

database, rather than being sensed directly from the application or its environment. For

example, the processor-type of a machine is a property. One or more of an entity set's

properties, called the primary key, uniquely identifies each entity. For instance, the primary

key of the machine entity might be its name.

Lomita provides ways to specify a rich set of connections and groupings between compo-

nents. A relationship set specifies one-to-one, many-to-one and many-to-many relations

between components. For instance, there is a many-to-one relationship between processes

and the machine on which they run. Thus the definition for the entity set Process specifies

that a Process entity is dependent upon the existence of some Machine entity through the

relationship set Task. A dependent entity may not exist by itself; it can be created only

by creating a relationship in the specified relationship set. In the seismological monitoring

application, a process's sensors can not be accessed unless it is running on some machine.

The definition of an entity set or a relationship set may contain data model operations to be

executed when an entity or relationship is created or deleted. For example, Figure 4 shows

create and delete operations for the Task relationship. The create operation ensures that

the Process.instance property is initialized, and then invokes the Machine.exec actuator to

start up the process. Not all entities need contain creation and deletion operations. Those

that do not, for instance the Machine entity set in Figure 4, must be added and removed

outside the control of Meta, via the database.

Often, one entity will be an extension of another. This is the case with the SigPro entity

set in Figure 4, which is based on the Process entity, with a few additional fields. This is

modeled in Lomita with a subtype entity set. The subtype inherits all the original entity's

attributes and optionally adds new ones. An inherited attribute that had type any in the

parent may be refined to a specific type in the new entity set.

An aggregate groups together related entities into a single new entity, which may define
attributes of its own. For example, the Si_ProGroup entity set is an aggregate consisting of

all SigPro processes. The FreeMachines aggregate collects together a subset of the Machine
entities that are lightly loaded. The members of an aggregate may be specified by a select

operation, and must be drawn from the same entity set.

Although Lomita describes the modular structure of the program that it is controlling,

Lomita itself lacks a notion of modularity. We wish to allow several Lomita control programs

to co-exist within one distributed system without name conflicts arising over the names of

entities and relationship sets. But we also want Lomita programs controlling related but

independent subsystems to be able to interact in well-defined ways. To this end we are

experimenting with ways of structuring multiple Lomita programs. This may be possible

entirely within the current Loznita language definition, or it may require additions to the
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language. In the meantime, multiple Lomita programs can be completely insulated from

each other using the facilities of Isls.

5.2 Derived sensors

Primitive sensor values obtained from the application program can be combined in the

form of derived sensors, which provide a higher-level view of the behavior of the program.

A derived sensor may combine values from a number of different primitive sensors, or

from a single sensor over a time interval. Derived sensors are defined by simple arithmetic

expressions augmented with some more powerful combining operations.

The following SigProTask relationship set definition illustrates the use of an arithmetic

expression to define a sensor giving the ratio of SigPro load to the Machine load:

SigProTask: Task relation SigPro - > Machine
attributes

sensor load_ratio: real := SigPro.load / Machine.load

,,o

end

end

The SigProTask relationship set consists of (Machine, SigPro) pMrs. Since the load_ratio

sensor is composed from primitive sensors in these two entity sets, it is natural that the

sensor definition appears in the SigProTask relationship set.

function

siz<s)
max(s),,
min(.)

ra ge(O
mean(s)

deviation(s)

choose_a)

description

Number of elements in set s
Maximum value of numeric set s

Minimum value of numeric set s

max(s) - min(s)
Mean valueof numeric sets

Standard deviationofnumeric set s

Return an arbitraryelement ofaggregatea

Table I: Meta sensorfunctions

In additionto simplearithmeticoperations,Lomita providesthe functionslistedin Table I

that operate over setsofvalues.With the exceptionof choose,thesefunctionshave three

overloadedmeanings. First,they may be appliedto a setreturnedfrom a set-valuedsensor

such as Machine.users. The foUowing Machine entityset definitionincludesa sensor that

givesthe currentnumber of userson a machine during the lastten minutes:
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Machine: entityset

attributes

key name: string

sensor users: {string}

sensor n_ users: integer := size(users)

end

end

In theirsecondform, thesefunctionstaketwo arguments (sand t).The functioniscomputed

over the set of valuesthat the sensors took during the lastt seconds. For example, the

following5igProdefinitioncontainsa derivedsensorhigh_loadthatisthe maximum load in

the lastten minutes.

SigPro: Process entityset
attributes

sensor load: integer

sensor high_load: integer := max(load, 600)

o,,

end

end

The thirdinterpretationappliesto the individualsensorsof the components comprising an

aggregate entity.Thus max(s) isthe maximum value of the sensorss of each component

of the containingaggregateentity.The followingSigProGroup aggregatedefinitionincludes

a sensor that givesthe maximum load of allthe $igProsin the group during the lastten

minutes:

SigProGroup: SigPro aggregate
attributes

key port: integer

sensor max_load: integer := max(high_load)

o..

end

end

5.3 Meta-tarsis: A prototype schema

In some ways, Lomita is too generalto be convenient.The structureof most distributed

applicationswillincludecommon components such as machines, processes,processgroups

and so on. We are developinga Lomita data model calledAfeta-tarsisthatcan be used as
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a prototype for most distributed applications, and modified as necessary for a particular

setting. Meta-tarsis provides some basic entity and relationship sets that will be common

to most application areas. It includes entities for workstations, file servers, networks and

processes. There are relationships for common process organizations such as a server and

its clients, a pool of processing slaves controlled by a single master process, and a group of

processes replicated for resilience.

Meta-tarsis contains a much more complete notion of Machine than the example just pre-

sented. It includes attributes such as physical location, owner, processor type, floating point

coprocessor type, operating system type and version, and local sub-network identification.

These permit a reasonably intelligent allocation of machines to tasks, for instance, by as-

signing floating-point-intensive jobs only to machines with a floating point coprocessor. The

Process entity set contains all the built-in sensors and actuators mentioned in Section 4.

There is a relationship set FailureClass which is intended to identify machines that may

experience common-mode failures. For instance, two diskless workstations that share a
common disk server machine would both fail if the disk server failed. When replication

is used to improve reliability it is vital that the replicas execute on machines in different

failure classes. These kinds of constraints can be expressed using a select clause such as

that which appears in the FreeMachines aggregate in Figure 4.

6 Expressing policy rules in Lomita

We now describe the highest level of Meta: the rule-based control language. Using the

Lomita data model of the application, the programmer writes a description of the intended

behavior of the system consisting of a set of Lomita policy rules. A policy rule is written

using the statement:

when condition do act/on

Intuitively,thisstatementdeclaresthatwhen the specifiedconditionisobserved,the stated

actionistobe taken.The conditionpart ofeach ruleisa predicatethatisexpressedon the

underlyingdata model. The actioncomponent issimply a sequence of actuatorinvocations

and data model operations.

Part of the controldescriptionfor the NuMon applicationisshown in Figure 5. The when

rulestatesthatwhen the number ofSi&Prosbecomes too low or theircollectiveloadbecsmes

too high and remains continuouslyhigh for at leastsixtyseconds,a new SigPro isto be

started.The form of conditionsislimitedto simple predicates,optionallyappearing in a

temporal logicexpression.By limitingconditionsto thisform,they may be easilytranslated

intowatches on sensors.Both primitiveand derivedsensorsmay be referenced.
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when size(slg_pro_group[program_ name]) < 2 ior
(during S;gProGroup[program-name].load> 5 to 60

always SigProGroup[proKram-name].load> 5/
do

create Task (
Machine := choose(Freeiachines)
Process:= create Sigpro (params :=

)
end

"/us,/.umon/data")

Figure 5: Rule forcreatingnew SigPros

The body of the when statement specifies a sequence of actions to be carried out. An action

may be an invocation of an actuator or a create or delete statement, which will invoke the

appropriate operation associated with that entity set. The create expression provides values

for any properties that are not initialized in the entity declaration. While Lomita permits

only a linear sequences of actions, more complex flow of control can be achieved either by

triggering multiple rules with more complex when conditions, or by writing more complex

actuators (e.g. in the C language). In the extreme, the control program can be written

almost entirely in C with embedded calls to Lomita for condition ev'&luation.

6.1 The Lomita rule interpreter

Lomita controlprograms are executed by an interpreter,which is replicatedin order to

providefaulttolerance.To enforcerules,Lomita needs to communicate with the individ-

ual sensorsand actuatorsin the applicationprocessesand the environment, such as the

Machine.jobs and SigPro.load sensors. Lomita uses Islsprocess groups to structurethis

communication.

Lomita maintains a database about the current structure of the application. This database

containsthe members ofentitysets,the tuplesineach relationshipset,and the membership

listsfor each aggregate. Most entitiescorrespond to processesin the applicationbeing

controlled.In our example, a SigPro entityisa processrunning on some computer. The

Machine entityis implemented by a processthat containsprocedures for the sensorsand

actuatorsin the Machine definition.One copy of thisMachine process must be started

up on each computer which Meta willmanage. For eac.hof these entities,the database

keeps a referenceto the process,and maintains the valuesofany propertiesassociatedwith

the entity.Entitiesthat do not correspond to processes,along with relationshipsetsand

aggregates,are maintained entirelywithin the database.
=..
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6.2 Mapping entity sets to process groups

Entity sets that correspond to processes are represented by Isis process groups. In our exam-

ple, all the Machine entities belong to a process group with a name such as/Meta/Machine.

All groups associated with Meta have Meta as the first component of their names, followed

by the set name (Machine in this case).

An Isls group provides an easy way to organize the elements in an entity set and to com-
municate with them. Isis multicast is used to simultaneously access all copies of a sensor

or actuator in an entity set. Isis multicast is atomic: an actuator invocation is received

by all group members or by none of them. In addition, concurrent multicasts are ordered

consistently at all group members. Isis group semantics also ensure that Lomita has accu-

rate knowledge of the current membership of an entity set. Changes to the membership of

a group, either planned, such as when a new entity joins a group, or unplanned, such as a

failure of an entity process, are serialized with group communication.

The group structure of our example is shown in Figure 6. The replicated Lomita rule

interpreters all belong to a process group named/Meta/Lomita, so that application processes

have a well-known address to which to send sensor updates. The Meta database resides in

the same processes as the Lomita interpreters and thus exhibits identical fault tolerance.

Figure 6: Lomita process group structure
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6.3 Rule interpretation

The details of Lomita interpretation will be explained by describing the execution of the

rule shown in Figure 5. The when condition has two parts which are or'ed together. The

first notices when the number of SigPros drops below two, and the second notices when

the composite load on the Sigpros exceeds five for one minute or more. To interpret the

first condition, a list is formed of the tasks belonging to the SigProGroup aggregate and the

size function is evaluated on that aggregate. Lomita re-evaluates size whenever an entity

is added to or removed from the corresponding entity set, for example, when a process is

created or terminates. Process creations are detected via the Process.create operation, and

process terminations with the Process.aJive sensor.

The other condition is the interval temporal logic expression:

during SigProGroup[program_name].load > 5 to 60

always SigProGroup[program-namel.load > 5

Such expressions are converted to finite state automata, in which the state transitions occur

when part of the predicate becomes true or false. This expression involves an aggregate

sensor whose value Meta maintains by periodically polling the members of the group. Meta

then applies the aggregate function in order to compute the value of the aggregate sensor.

The finite state automaton for this expression is shown in Figure 7. The first state sets a

watch on the aggregate sensor in order to be notified when the load goes above a threshhold.

When this event occurs, the automaton transfers to the next state, arms an interval timer,

and wai-ts for either t_he interval timer-to go-oF or the watch to arrive noting that the load

has gone below the threshhold. If the next event received is the timer event, then the guard
is satisfied and the action is initiated.

@ load>5 (
"_ load<5

)
Figure 7: Finite State Automaton

Ifeitherthe temporal logicexpressionor the conditionon processgroup sizeissatisfied,the

actionpart of the ruleisobeyed. In thiscase,Lomita uses Meta to obtain a lishtly-loaded

machine An entry in the Task relationshipiscreatedand Lomita attempts to run the job

on the chosen machine. The actionissynchronous,in that Lomita waits foractionsto be

completed to enableitto detectfailures.Upon failurethe actionisretried.
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6.4 Fault tolerance of the Lomita implementation

The Lomita interpreter is replicated to provide fault tolerance. One of the Lomita pro-

cesses is chosen to have primary responsibility for executing the control program, while the

extra processes are backups. These processes cooperate using the Isls coordinator-cohort

mechanism. The coordinator is the active party, sending out messages to effect the desired

application behavior. The other processes, cohorts, remain passive unless the coordinator
falls, at which point one of them is chosen as the new coordinator. While passive, the

cohorts receives all messages involving the coordinator and maintain an up-to-date view of

the system being monitored.

If the Lomita interpreter is replicated n times this architecture can survive n - 1 process

failures. The degree of fault tolerance required will vary depending upon the application.

Total failure occurs if all n Lomita processes fail. Lomita can recover from total failures

if the database is checkpointed to disk periodically, and updates to it are logged to disk.
Meta leaves the activation of this mechanism as an option for the application programmer,

because there are two other reasonable ways to cope with total failure of the control program

that avoid the need for logging.

First, each application process can monitor for the total failure of the/Meta/Lomita group.

If Lomita fails then the application could terminate itself. Simply restarting Lomita from its

initialization files would restart the application in an orderly way. By having the application

terminate itself, there is no possibility of "orphan" application processes surviving the failure

of the control program. Such orphan processes would generate much confusion when the

application was restarted.

The second option is to leave surviving application processes running, and arrange that

when the control program restarts it first searches for existing application processes from a

previous execution. In our example it would do this by looking for any existing members

in the /Meta/SigPro group. Once the orphans had been identified, they could either be

terminated, or re-initialized and integrated in the new instance of the application. Currently

we have not provided support for orphan detection in the Lomita language, however an Isis

program could perform this function at application startup.

7 Consistency and atomicity considerations

With Meta, distributed application management is a soft real-time reactive system. When

a condition becomes true, the control program notices this and reacts in a timely manner.

The control program should incorporate a model of how long its actions should take to

produce noticeable changes in the application that it is controlling.
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A number of properties are required of the Meta implementation to satisfy this model.

Meta must provide a predictable and preferably short delay between the occurrence of

some condition and its notification to the control program. For compound conditions, the

set of sensor value readings must be consistent. And, when multiple conditions might be

triggered concurrently there is a need for atornicity.

7.1 Real-time consistency

For the kind of monitoring involved with application management, a weak kind of real-time

consistency is needed. Several factors can affect the level of consistency achieved. First there

is the inherent inaccuracy in the sensor itself. Then there is the delay in communicating

new sensor values to Meta. Sensor values can be timestamped at their source so that no

matter what the delay, the time at which the sensor reading was taken will be known.

However inaccuracies between clocks on different machines (really just another kind of

sensor inaccuracy) introduce further uncertainty. To accommodate these inaccuracies, Meta

represents a sensor value (or a clock value) as an interval in which the true value lies. Thus a

sensor reading is treated as a two-dimensional interval: for a certain time period, the sensor
value is known to have fallen within a measured range. Under the assumption that sensors

are piecewise continuous, Meta can interpolate an estimate of the value that the derived

sensor took during a given interval of time. This approach is discussed fully elsewhere

[Marzullo 1989, Marzullo and Chew 1990].

Decision making in the presence of inaccurate sensors represented by intervals is more

complex than with point sensor values. With many sensors, taking the midpoint of the

interval and treating it as a point sensor value is appropriate. But this is not always

the case. Suppose we have a disk.space sensor that returns the number of bytes free on a

file system. A rule that is triggered when the available diskspace reaches a certain level

allows two interpretations: that the action be taken if at least the given level of diskspace

is available, or if at most the given level is available. A rule that waited for the disk to

become almost full before deleting temporary files might use the upper bound of the interval.

Conversely a rule that waited for the required space to become available before performing

a large file trsasfer should use the lower bound of the diskspace interval before proceeding.

Meta has logical operators for both of these interpretations. The user is expected to select

the one appropriate to the situation. Distributed evaluation of the resulting expressions is

discussed by Wood [1991].

Proper handling of issues such as the accuracy intervals for sensors and the latency before

actuators take effect is essential for producing a robnst control program.
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Real-time consistency on Unix and ISIS

In the Unix environment in which Meta runs, clocks are approximately synchronized by

the Berkeley time protocol [Gusella and Zatti 1985], which achieves an accuracy of about

1 millisecond. Although Isis does not provide real-time message delivery guarantees, the

communication delay imposed by the Isis multicast primitives is normally around 10 to 30

milliseconds. However Unix provides unpredictable scheduling delays and virtual memory

waits.These can affectthe responsivenessofIslsand theapplicationitselfto the notification

of new sensorsvalues. Thus, to be conservative,we assume that the end-to-end sensor

latency can be as largeas severalseconds. It remains for the applicationprogrammer to

specifythe accuracy intervalsforsensors,and the minimum meaningful pollingperiod.For

the kinds of applicationswhich use Meta, pollingintervalsof severalseconds,and up to a

minute are reasonable.In many casesthe dominant considerationisthat producing sensor

valuesshould impose littleoverhead on the underlyingapplication.

Although real-timeresponsivenessisclearlyimportant, Meta currentlyoffersno explicit

real-timeguarantees. Instead,statisticscharacterizingthe typicalsystem response times

under various conditionsare provided,and the designer isexpected to ensure that the

applicationoperateswellaway from the regionat which deadlinesmight be violated.We

seelittlechance forimproving on thisapproach aslong as Meta remains a Unix application.

We are consideringportingIslsand Meta to an operatingsystem kernelsuch as Chorus

[Armand eta/. 1989] that provides support for real-timescheduling.This should reduce

these performance figuresand make them more predictable.However real-timemulticast

[Cristianet al.1986] and group membership algorithmsare required to achieve the full

potentialof the Meta sensormodel.

7.2 Virtual synchrony

In addition to real-timeconsistency,Meta provides a high degree of logicalconsistency

through the semantics ofIsls.By logicalconsistency,we mean a consistenttotalordering

on events such as sensorreadings,actuatorinvocations,and processfailures.We callthe

model thatunderliesIslsv/rtua/8ynchronybecause eventsappear to happen one-at-a-time.

The ISlsimplementation permits events to overlapor be reordered where such changes

have no effecton the correctnesson the application.

The consistentorderingoffailureswith othereventsisparticularlyimportant. For instance,

we can be sure thatafterthe controlprogram learnsof a processfailure,itwillnot receive

any furthersensorreadingsfrom the process.This simplifiesthe conditionsattached torules

in the controlprogram. The ramificationsofthismodel and the synchronizationprotocols

needed to implement ite_ciently are discussedby Birman and Joseph [1987].Detailsof

the adaptation of thismodel to cover the logicalconsistencyissuesthat arisein Meta are

presentedby elsewhere[Wood 1991].
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A difficulty with virtual synchrony is that it requires the system to occasionally reorder

events in an execution to fit the logical requirements of the model. For example, it proves

necessary to impose an ordering on failures that might not correspond to the order in which

failures actually occurred, or to pretend that a failed process did (or did not) see some event

before it failed. If there is external evidence establishing otherwise (such as a file written by

a process just before it died) or if processes have some way of communicating outside Isxs,

then the illusion of virtual synchrony will be violated. In most of our previous uses of Isis

this has not been a problem since all communication takes place via Isls. It is possible that

there are distributed control algorithms that cannot be represented in Meta, as it currently

exists, because of its use of virtual synchrony. We leave this as an open question for future

study.

7.3 Atomicity

When Meta operations trigger actions, problems of atomicity are raised. For example,

suppose a Meta rule reacts to a failure by selecting a lightly loaded machine, reserving it,

and instantiating a program on it. If several such rules are triggered simultaneously, one

must prevent the machine being reserved more than once.

Meta provides a simple default policy for controlling concurrency, in which the action part

of each rule is a critical region protected by a single mutual exclusion lock for the entire

control program. Thus, in situations where a rule might trigger a sensor-actuator feedback

loop, rules that monitor sensors or trigger actuators will be strictly serialized. In particular,
this is the case for the machine reservation rule mentioned above.

The style of locking used by Meta can result in inefficient synchronization patterns when

sets of rules do not in fact overlap on the sensors and actuators that are referenced. More

sophisticated users may choose to disable _Meta's mutual exclusion lock on actions, and

provide their own mutual exclusion primitives coded as actuators.

8 Extending Meta to physical control systems

So far, we have discussed the Meta sensor/actuator model in the soft real-time world of

managing software applications. Sensors can also correspond to measured quantities in the

physical world, in which case Meta might be used to control the external environment. For

instance, a system for monitoring the environment in a machine room might monitor air

temperature and chilled water pressure. If the air conditioning system becomes overloaded,

the least critical pieces of computer equipment could be turned off in an orderly way, in

the hope of offering a degree of continued operation. A more ambitious example would be

controlling an industrial plant.
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We believe that there are many applications in which Meta could be used to monitor and

control real-world physical processes, and which would be difficult or impossible to solve

in the absence of such a tool. Examples of areas in which our user community is using or

experimenting with Isls and Meta include stock and bond trading systems, factory-floor job

scheduling in an industrial plant, clinical information systems in a hospital, and management

of the orbiting space laboratory NASA has proposed to build. All these applications have

reai-time, external consistency requirements that are much more stringent than the kind of

application management described in this paper.

Physical quantities have different characteristics from internal, computer generated mea-
sures. Their values are often taken from a continuous domain and change slowly and

predictably. Whereas sensors corresponding to internal measures normally fail by crashing,

physical sensors may also fail by giving erroneous values. To accommodate applications

of this sort, the Meta architecture includes techniques for using collections of inaccurate

physical sensors to implement more reliable, accurate abstract sensors. This material is

explored elsewhere by Marzullo [1989].

9 Comparison with other control technologies

The problem of distributed application management has been largely ignored in the past

and seldom has system-level support for it been provided. In this section we look at related

work in the area. A significant amount work has been done on tools for monitoring the

behavior of distributed applications, while comparatively little attention has been paid to

mechanisms for controlling distributed applications. We are aware of no work that combines

the two: using the results of monitoring to automatically control an application.

9.1 Distributed performance monitoring and debugging

Many systems have been developed for instrumenting distributed programs to obtain per-

formance figures, or for distributed debugging. Several researchers have recognized the

benefits of viewing the data gathered from monitoring as a temporal database. Foremost

among these is Snodgrass [1988]. In his system data is extracted and analyzed by posing

queries in the temporal query language, TQue/, which is based on the relational calculus.

Lomita conditions, based on real-time interval logic expressions, are equivalent in expressive

power, but arguably easier to use. More importantly, by adding control to monitoring we

have closed the loop and produced a feedback control system.
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9.2 Distributed operating systems

Many of the functions of what we call the control program are functions that are more

usually associated with an operating system: in particular scheduling and resource manage-

ment. Indeed, our choice of the term control program is intended to reinforce this similarity.

In a general purpose distributed operating system, such as Locus [Walker et al. 1983], the

set of resources and control parameters is fixed by the operating system, and usually limited

to the lowest common denominator of the applications envisaged.

A common facility is remote execution, in which unrelated nondistributed programs are

allocated to or migrated between machines in order to share the available load more evenly

[Douglis and Ousterhout 1987, Litzkow et al. 1988]. Load sharing is easily implemented

using Meta, but Meta provides much richer facilities for describing the inter-relationships

and dependencies between the processes making up a true distributed application. With

Meta, the programmer can build operating-system-like facilities, but at the application
level.

9.3 Configuration of distributed applications

There are a small number of systems for controlling or configuring distributed applications

that take a more structured view of the application, permitting a finer degree on control.

The RM2 distributed resource manager [Craft 1983], permits the construction of compound

software resources, which are similar to our notion of a distributed application. Although

resource requirements and preferences can be specified when configuring an application with

RM2, only static attributes such as memory size and processor type may be used. There is

no counterpart to Meta sensors so that dynamic control such as load sharing is not possible.

Finally, the RM2 implementation has a small number of fixed resource allocation policies,

whereas with Lomita the policy may be specified by the programmer.

The Conic language and system [Kramer et al. 1985] is perhaps the most thorough attempt

at dynamic reconfiguration for distributed programs. A Conic application is structured as

a set of modules and communication ports. Configuration consists of creating instances of

modules and connecting input and output ports in a type-safe way. Conic supports dynamic

reconfiguration by allowing new modules to be created and existing ports to be reconnected
at run-time. While Conic provides some of the functionality necessary for application

management, there is no general notion corresponding to either sensors or actuators. Thus

configuration scripts cannot react to changes in the application or it environment, and

reconfiguration is restricted to modifying module connections and creating new modules.
__I
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9.4 Rule-based systems

Rule-based techniques, like those in Meta, are commonly used in debuggers for concurrent

programs. Usually these have taken the form of production rule breakpoints in which a

condition over the values of variables and the program counters of several processes triggers

an action such as suspending the program being debugged. Bruegge's Pathrules language

[Bruegge and Hibbard 1983] is a good example. Debugging researchers seem not to have

recognized the general utility of production rule systems for other kinds of monitoring and

control of distributed applications.

Rule-based techniques have been used widely in expert systems. The approach used by

Meta resembles some expert systems of the distributed blackboard model, especially those

used in soft real-time control applications [Cruise et al. 1987]. However Isis provides a

sounder basis for handling failures and achieving consistency that is more appropriate to

the environments in which Meta will be used. The production rules provided by Meta are

similar in structure to expert system rules, but we believe that the actual rules written

for an application management system will be much less complex, and less ambitious than

those in typical expert systems.

9.5 User interfaces for distributed control

A graphical user interface complements a textual language for distributed application man-

agement. The information derived from application monitoring can be much easier to

comprehend when displayed in graphical form, and a graphical editor interface provides

a particularly powerful way of experimenting with different control policies. ConicDraw

[Kramer et al. 1989] is such a graphical interface to the Conic configuration system. It

displays the current structure of the system, and provides graphical counterparts to the

facilities of the Conic configuration language.

Magic Lantern isa graphicalapplicationmanagement toolbeing developed in concertwith

the Meta project[VanRenesse 1990].It providesa comprehensive setof graphicalobjects

such as stripchart recorders,bar graphs, scrollbars,buttons and text objects. These

objectscan deriveinformationfrom Meta sensors,and invokeMeta actuators.The layout

of the displayand the connectionsto Meta are completely programmable by the Magic

Lantern user. Magic Lantern may alsobe used independentlyof Meta and Isis.With this

toolone can experiment interactivelywith differentcontrolstrategiesand receiveimmediate

feedback in terms of the performance of the application. This gives a fuller understanding

of the behavior of the application, leading to a better automatic control policy in the form

of a Lomita script.
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10 Conclusions

_,Ve have described the Meta system, which provides a sound basis for implementing dis-

tributed application control mechanisms. Although high level in approach and structure, it

has proved possible to express and maintain rigorous semantics in managing a distributed

application.

The widespread availability of distributed computing and operating systems has made it

increasingly important to focus on the technologies by which large systems can be composed

from sets of components. By offering a programming methodology for distributed control,

Meta makes it easier to build robust distributed applications using components that, in-

dividually, are incapable of tolerating faults. The approach also makes it easier to reason

about and establish the correctness of the resulting control structures. These are important

steps towards the open, heterogeneous distributed operating systems that will characterize

the next generation of distributed programming environments.

Availability

Version 1.2 of Meta has been implemented using the Isis system and is being distributed in

source code form within the Isis user community of about 300 sites. This version contains a

complete implementation of the Meta sensor and actuator subroutine]ntefface described in

Section 4, and the built-in Machine and Process sensors. The Lomita language, as described

in Sections 5 and 6 is still being implemented. The 1.2 release contains an earlier query

language based on the relational algebra. We have also produced an experimental C-Prolog

interface to Meta that we are no longer releasing. A preliminary version of the Magic

Lantern system is also included in the Isis release.
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